

cfbinout & xtdhazard: Control-Function Estimation of Binary-Outcome Models and the Discrete-Time Hazard Model

Harald Tauchmann & Elena Yurkevich

Friedrich-Alexander-Universität Erlangen-Nürnberg

June 7, 2024

2024 German Stata Conference, Mannheim

Outline

- 1 Motivation & Theory
- 2 Stata Implementation
- Syntax
- 4 Simulations
- 6 Real Data Application

6 Conclusions

Motivation

- Discrete-time hazard model obvious approach to modeling transitions if covariates x_{it} change values frequently
- E.g. Panel data (for instance annual surveys)
 - » New information about \mathbf{x}_{it} in each panel wave $t = 1, \dots, T$
 - » Information about whether transition has occurred ($\tau_i = t$) or has not yet occurred ($\tau_i > t$) at same frequency
- Models prob. of unit *i* of transitioning in period t conditionally on not yet having transitioned (hazard λ_{it})

$$\lambda_{it} = \mathsf{P}\left(\tau_{i} = t | a_{i}, \mathbf{x}_{it}, \tau_{i} \geq t\right) = \mathsf{F}\left(a_{i} + \mathbf{x}_{it}\boldsymbol{\beta}\right)$$

Focus:

- » Transition into **absorbing state** (single-spell model)
- » Model with unobserved heterogeneity/frailty a_i

Tauchmann & Yurkevich (FAU)

cfbinout & xtdhazard

Estimation of Discrete-Time Hazard Model

- In terms of estimation, coincide with binary outcome models such as logit, probit, and cloglog (Jenkins, 1995; Tutz and Schmid, 2016)
 - » Re-formulating model in terms of binary outcome y_{it}
 - » $y_{it} = 1$ if $\tau_i = t$ and $y_{it} = 0$ if $\tau_i > t$
 - » y_{it} with $t > \tau_i$ not considered (not informative about transition to absorbing state)
- Allows for modelling (unit-levelunobserved heterogeneity/frailty, a_i) as random effects like in panel binary outcome models (xtlogit, xtprobit, xtclolog)

Modelling Unobserved Heterogeneity

- Random effects do not accommodate correlation of unobserved heterogeneity and covariates
- Linear probability model (LPM), which allows for fixed effects accommodating such correlation, as possible alternative
- LPM with unit-level fixed effects heavily biased in single-spell hazard model setting (Farbmacher and Tauchmann, 2023)
 - » Not because of possibly inappropriate linear specification
 - » Not because of failure to eliminate unobserved heterogeneity (biased even in its absence)
- Cond. expectation of error term $\varepsilon_{it}^{\mathsf{FE}}$ in fixed-effects model E $(\varepsilon_{it}^{\mathsf{FE}} | a_i, \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, \tau_i \ge t) = a_i + \mathsf{E}(\bar{\mathbf{x}}_i)_t \boldsymbol{\beta}$

Own-Differences IV Estimation

- Linear (internal) instrumental variables (IV) estimator to deal with unobserved heterogeneity (suggested by Farbmacher and Tauchmann, 2023)
 - » All explanatory variables \mathbf{x}_{it} instrumented by their own (first) differences $\Delta \mathbf{x}_{it}$
 - Unlike fixed-effects in standard setting, does not accommodate arbitrary correlation between a_i and x_{it}
 - » Rather assumption $Cov(\Delta \mathbf{x}_{it}, \mathbf{a}_i) = \mathbf{0}$ required (while allowing for $Cov(\mathbf{x}_{it}, \mathbf{a}_i) \neq \mathbf{0}$)
 - Still subject to some sort of survivor bias (rather small in many settings)
 - » Does not suffer from bias caused by including unit-level fixed effects

Non-Linear Control Function Estimation

Linear hazard specification (LPM) not too appealing

- » At least if one thinks of LPM in terms of modelling a data generating process
- Rationale for using (first) own-differences as an instrument may also apply to nonlinear models
 - » Discussed in passing in Farbmacher and Tauchmann (2023)
 - » Control function approach (cf. Wooldridge, 2015)
 - » I.e. including first-stage residuals as additional second-stage regressors

Existing Stata Commands

- Instrumental variables and control function estimators (naturally) implemented in Stata
 - ivregress 2sls
 - ivprobit, twostep
 - ivreg210 (contributed by C.F. Baum, M.E. Schaffer, Steven Stillman)
 - 4. ivcloglog (contributed by W. Liu)
 - ... probably more
- Generating numerous internal instruments cumbersome
 - » In particular if factor variables syntax used
- Existing commands not specific to single spell hazard model setting
 - » User needs to check actively if data warrants using first-differences IV estimator
- No command for control function logit

Two New Stata Commands

1. xtdhazard

- » Checks data for being consistent with transition to absorbing state
- » Temporarily generates internal instruments
- » Calls either ivregress 2sls or cfbinout

2. cfbinout

- » Runs logit, probit, or cloglog control function estimator (following Wooldridge, 2015)
 - > Stata implementation follows Terza (2017)
- » If called by xtdhazard uses internal instruments (first- or higher-oder differences)
- » Can also be used as stand-alone command using user-specified instruments

The xtdhazard Command

- Just a wrapper for more convenient IV estimation of discrete-time hazard model
- Straight-forward with estimator (two-part command name) 2sls (calls ivregress 2sls)
 - In terms of theory, in detail discussed in Farbmacher and Tauchmann (2023)
 - » Just ivregress 2sls in terms of Stata
- Less straight-forward with estimators logit, probit, or cloglog (calls cfbinout)
 - Only some simulation-based discussion in online appendix to Farbmacher and Tauchmann (2023)
 - Some issues that do not apply to linear model (binary rhs-variables, quasi-complete separation)

The cfbinout Command

- Implements control function estimators, i.e. first stage residuals included as additional regressors
- Follows and draws on Terza (2017) "Two-stage residual inclusion estimation: A practitioners guide to Stata implementation [st0505]"
 - » Considering ML estimation in second stage
- Allows for logit, probit, or cloglog link (two part command name cfbinout link)
 - » For probit link (largely) equivalent to ivprobit, twostep
- Estimates a first stage for all regressors if called by xtdhazard

Specific issues with cfbinout

- Discrete endogeneous variables
 - » Not accommodated by standard control function approach (e.g. not allowed with ivprobit, twostep)
 - » According to Wooldridge (2015) 'average structural form' can – under certain assumptions – still be estimated by including generalized residuals from binary outcome first stage
 - » cfbinout allows specifying the link-function for first stage (probit, logit, linear) and uses generalized residuals for the former
- Quasi complete separation
 - First stage may be subject to quasi complete separation (prone to if cfbinout is called by xtdhazard)
 - » cfbinout optionally allowed to switch to linear first stage

Syntax of xtdhazard

xtdhazard estimator depvar indepvars [if] [in]
[weight] [, options]

- Requires data to be xtset (declared panel data)
 - » panelvar and timevar required
- Estimators
 - (i) 2sls (\rightarrow linear 2SLS, calls ivregress 2sls)
 - (ii) logit (\rightarrow control function logit, calls cfbinout)
 - (iii) probit (\rightarrow control function probit, calls cfbinout)
 - (iv) cloglog (\rightarrow control function complementary log-log, calls cfbinout)

Selected Options for xtdhazard

General Options

- » <u>d</u>ifference(*numlist*): Sets order of differencing
 - > difference(1), i.e. (only) using first-differences as instruments, is the default
 - Yet, for instance, also difference(1 3) is possible (yet makes probably little sense)
- » <u>instr</u>uments(varlist): Specifies additional, non-internal instruments
- » <u>noabsorb</u>ing: Forces estimation if depvar does not indicate absorbing state
- Options for estimator 2sls
 - » <u>inter</u>actinst: Use squares and interactions of instruments as additional instruments
 - » <u>nofirst</u>stage: Do not save first-stage coefficients in e(G) and do not perform checks regarding first-stage
 - » <u>und</u>erid(string): Calls underid from within xtdhazard

Selected Options for xtdhazard (cont.)

Options for estimators logit, probit, and cloglog

- » order(#): Specify order of control-function polynomial
 - > order(1), i.e. just including (generalized) residuals, is the default
 - > order(2), order(3), ... means also including higher powers $(\rightarrow ivcloglog)$
- » noresgenerate: First-stage residuals are only temporarily generated; coefficients of first-stage residuals are not reported; first-stage coefficients are not saved
- » <u>resname(stub)</u>: First-stage residual permanently saved as stub_varname2; the default for stub is res
- » replace: Variable stub_varname2 replaced if already it exists

Syntax of cfbinout

```
cfbinout link depvar [varlist1]
(varlist2 = varlist_iv) [if] [in] [weight],
[options]
```

Link functions

- (i) probit: normal CDF, $\Phi(\boldsymbol{\beta}\boldsymbol{x})$
- (ii) logit: logistic CDF, $\frac{1}{1+\exp(-oldsymbol{eta}\mathbf{x})}$
- (iii) cloglog: Gumbel CDF, $1 \exp(-\exp(\beta \mathbf{x}))$

16/33

Selected Options for cfbinout

- Largely the same as for xtdhazard logit (and xtdhazard probit/cloglog)
- Options not available with xtdhazard logit (xtdhazard probit/cloglog)
 - » <u>fs</u>link(name): Specifies first-stage link function (logit [default] probit, linear)
 - » <u>fss</u>witch: Switch equation-wise to fslink(linear) in case of quasi-complete separation in first-stage

17/33

Data Generating Process for Outcome y_{it}

$$\begin{split} \lambda_{it} &= \mathsf{P}\left(y_{it} = \mathbf{1} | a_i, \mathbf{x}_{it}, \tau_i \geq t\right) \\ &= \mathsf{F}\left(a_i + \beta_{con} x_{con,it} + \beta_{bin} x_{bin,it} + \beta_{tiv} x_{tiv,i}\right) \end{split}$$

•
$$y_{it} =$$
 "missing" if $\tau_i < t$ (i.e. $y_{it-1} \neq 0$)

a_i: unobserved heterogeneity (beta distr.)

- *x_{bin}*: **binary** (Bernoulli distr.)
- x_{tiv}: time-invariant and contin. (wt. sum of beta distr.)
- ► $F(\cdot) = \Phi(\cdot)$ (alternatively logistic CDF, Gumbel CDF)
- \triangleright β_{con} , β_{bin} , β_{tiv} take value of 1 (rescaled for logit and cloglog) or 0 (\rightarrow various **exclusion restrictions**)

Correlation of Unobserved Heterogeneity and **x** Vars.

. correlate a x_tiv x_bin x_con d.x_bin d.x_con
(obs=16,000)

D. D. x_tiv x_bin x_con x_bin x con a l 1.0000 x_tiv | -0.7517 1.0000 x bin l -0.5843 0.4349 1.0000 x_con | -0.8131 0.6103 0.4727 1.0000 x_bin | D1. | 0.0034 -0.0000 0.5698 -0.0053 1.0000 x_con | D1. | -0.0028 0.0018 -0.0054 0.4134 -0.0103 1.0000

- ► Unobserved heterogeneity a (negatively) correlated with all x variables, yet uncorrelated with ∆x
- x variables stationary (time series properties matter Farbmacher and Tauchmann, 2023)

19/33

Coefficient Values and Sample

- N = 4000 (# of units), T = 5 (# of periods)
- Patters of included x vars.
 - (i) Only continuous x_{con}
 - (ii) Continuous x_{con} and time-invariant x_{tiv}
 - (iii) Continuous x_{con} and binary x_{bin}
 - (iv) All three x_{con} , x_{tiv} , x_{bin}
- Exclusion restrictions taken into account in estimation
- Average hazard $\overline{\lambda} = 0.25$ (alternatively $\overline{\lambda} = 0.05$)

Estimators and Replications

Three estimating procedures

- (i) 'Naive' probit (alternatively logit and cloglog)
- (ii) Linear 2SLS (\rightarrow xtdhazard 2sls)
- (iii) Control function probit (\rightarrow xtdhazard probit, alternatively xtdhazard logit and xtdhazard cloglog)
- Focus on (sample) average partial effects of x_{con} and x_{bin}
 - » β_{tiv} not identified in 2SLS and control function estimation
- Monte Carlo simulations using 2000 replications

Simulation Results: Probit. $\overline{\lambda} = 0.25$

Table: Average Partial Effects (probit, $\overline{\lambda} = 0.25$)

Av. partial		Scenarios: rhs vars. inclusion					
effect of	Estimator	x _{con}	x _{con} , x _{tiv}	X _{con} , X _{bin}	$x_{\rm con}, x_{\rm bin}, x_{\rm tiv}$		
X _{con}	Naive probit CF probit 2SLS True value	0.106 0.306 0.306 0.305	0.153 0.282 0.282 0.282	0.113 0.249 0.249 0.260	0.126 0.214 0.216 0.219		
x _{bin}	Naive probit CF probit 2SLS True value			0.219 0.282 0.280 0.284	0.205 0.248 0.250 0.248		

Note: The table presents simulation results comparing estimated and true mean-marginal effects in a discrete time hazard framework. The estimations were based on 2000 simulation runs. "True value" refers to the actual mean-marginal effects used in the simulation. The constants chosen for different scenarios were selected to achieve a mean probability of 0.25.

Simulation Results: Alternative Simulations

Pattern of results generally the same:

- (i) logit estimation, $\overline{\lambda} = 0.25 \, {\rm Pogit}, \overline{\lambda} = 0.25$
- (ii) cloglog estimation, $\overline{\lambda} = 0.25 \, \cdot \, \text{cloglog}, \overline{\lambda} = 0.25$
- (iii) probit estimation, $\overline{\lambda} = 0.05$ probit, $\overline{\lambda} = 0.05$

Real Data Application: Replication of Cantoni (2012)

Cantoni (2012, EJ): "Adopting a New Religion: The Case of Protestantism in 16th Century Germany"

- Research Question: Which factors explain territories adopting protestantism?
- Uses historical panel data (74 territories in 16th century Germany; 5 years from 1532 to 1600)
- Key results: (i) distance to Wittenberg and (ii) neighbours' religious choices matter for adoption of protestantism
- Focus on fixed-effects specification Cantoni (2012, p. 522, Table 6, Column 3)
 - » Subject to minor change regarding clustering

24/33

Original Result by Cantoni (2012)

. xtreg refuntil lagrefneighbors, cluster(kreis) nonest fe

Fixed-effects	(within) regre	ssion		Number of	obs	=	370
Group variable	: tcode			Number of	groups	=	74
R-squared:				Obs per gr	oup:		
Within =	0.2348				min	=	5
Between =	0.0751				avg	=	5.0
0verall =	0.0974				max	=	5
				F(1, 9)		=	37.76
corr(u_i, Xb)	= 0.0471			Prob > F		=	0.0002
		(Std. er	r. adju	usted for 1	0 clust	ers	in kreis)
	I.	Robust					
refuntil	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
lagrefneig_s	.6792987	.1105446	6.15	0.000	.4292	295	.9293678
_cons	.1832339	.033076	5.54	0.000	.1084	108	.2580569
sigma_u	.4024456						
sigma_e	.26168501						
rho	.70283546	(fraction of	varia	nce due to	u_i)		

Neighbouring territories' confession (lagrefneighbors) matters

How is Absorbing State Dealt With?

```
. gen l_refuntil = l.refuntil
(74 missing values generated)
```

. tab refuntil l_refuntil if e(sample)

	l_refuntil		
refuntil	0	1	Total
+-		+	
0	166	0	166
1	28	102	130
+-		+	
Total	194	102	296

- "Selection into Protestantism was effectively an absorbing state" (Cantoni, 2012, p. 523)
- Not taken into account in Fixed Effects Specification

Territories at Risk Only

. xtreg refuntil lagrefneighbors if l_refuntil != 1, cluster(kreis) fe

Fixed-effects	(within) regre	ssion		Number of	obs	=	268
Group variable	: tcode			Number of	groups	=	74
R-squared:				Obs per g	roup:		
Within =	0.1442				min	=	1
Between =	0.8669				avg	=	3.6
0verall =	0.0004				max	=	5
				F(1, 9)		=	10.27
corr(u_i, Xb)	= -0.4007			Prob > F		=	0.0107
		(Std. er	r. adj	usted for :	10 clust	ers	in kreis)
refuntil	 Coef.	Robust Std. Err.	t	P> t	[95% C	onf.	Interval]
lagrefneig_s	.5722313	.1785385	3.21	0.011	. 1683	491	.9761135
_cons	.0104711	.044465	0.24	0.819	0901	157	.1110578
sigma_u sigma_e rho	.43093158 .28265007 .6991975	(fraction of	varia	nce due to	u_i)		

Only considering territories at risk makes little difference

Linear First-Differences IV Estimation

. xtdhazard 2sls refuntil lagrefneighbors if l_refuntil != 1, cluster(kreis)
> underid(underid)

Linear discrete-time hazard model			Num	ber of ob	s =	194
first-difference	es IV estimat	ion	Num	ber of gr	oups =	61
			Wal	d chi2(1)	=	0.25
			Pro	b > chi2	=	0.619
			R-s	q	=	
		(Std. e	err. adju	sted for	10 clusters i	in kreis)
1		Clustered				
refuntil	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lagrefneig_s	7880119	1.582831	-0.50	0.619	-3.890303	2.31428
_cons	.4154438	.5556795	0.75	0.455	6736681	1.504556
Underidentifica	tion test: j	= 6.35	; Chi-sq(1); p-	value = 0.011	L7

- xtdhazard 2sls used for estimation
- Does not confirm that neighbours' religious choices matter
- Underidentification (d.lagrefneig_s weak instr.) rejected

Control Function Logit Estimation

. xtdhazard logit refuntil lagrefneighbors if l_refuntil != 1, cluster(kreis)

Logit discrete-time hazard model				Number of	obs	= 194
first-differences CF estimation				Number of	groups	= 61
				Wald chi2	(1)	= 0.10
				Prob > ch	i2	= 0.749
Log pseudolik	elihood =	-79.136				
			(Std. err. a	djusted f	or 10 cluste	rs in kreis)
	1	C1u	stered			
refuntil	Co	oef. Std	. Err.	P> z	[95% Co	nf. Interval]
lagrefneig_s	-5.73	36172 17.	90578 -0.3	0.749	-40.8308	6 29.35851
res_lagref_s	6.67	2166 15.	71915 0.4	2 0.671	-24.136	8 37.48113
_cons	.169	4307 6.2	19791 0.0	0.978	-12.0211	3 12.36

- xtdhazard logit used for estimation
- Results qualitatively the same as counterparts from 2SLS

Control Function Logit Estimation (cont.)

. margins, dy	/dx(lagrefneig	hbors)				
Average margin Model VCE: Clu	Number of	obs = 194				
Expression: Pr dy/dx wrt: la	r(refuntil), p agrefneighbors	oredict()				
	 dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
lagrefneig_s	7007748	2.234062	-0.31	0.754	-5.079456	3.677906

Result in terms of average marginal effects

Control Function Cloglog Estimation

. xtdhazard cloglog refuntil lagrefneighbors if l_refuntil != 1, cluster(kreis)
> difference(2) replace

Cloglog discre	te-time hazard	l model	Num	ber of ob	s =	133
2nd-difference:	s CF estimatio	on	Num	ber of gr	oups =	50
			Wal	d chi2(1)	=	0.53
			Pro	b > chi2	=	0.467
Log pseudolike	lihood = -50	.153				
		(Std.	err. adju	sted for	10 clusters	in kreis)
	1	Clustered				
refuntil	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
	+					
lagrefneig_s	-4.825455	6.626972	-0.73	0.467	-17.81408	8.163171
res_lagref_s	7.00504	9.303846	0.75	0.451	-11.23016	25.24024
_cons	0397897	2.861651	-0.01	0.989	-5.648523	5.568944

- xtdhazard cloglog used for estimation
- Difference-in-Differences used as instrument

Control Function Cloglog Estimation (cont.)

Average marginal effects Number of obs = 133 Model VCE: Clustered						
Expression: Pr(refuntil), predict() dy/dx wrt: lagrefneighbors						
method						
Err. z	P> z	[95% Conf. I	nterval]			
70068 -0.64	0.519	-2.310542	1.166461			
	() method Err. z 70068 -0.64	() method Err. z P> z 70068 -0.64 0.519	Number of ot () method Err. z P> z [95% Conf. I 70068 -0.64 0.519 -2.310542			

- Result in terms of average marginal effect
- Point estimate changes only marginally

Conclusions

- Using 2SLS or non-linear control function estimation probably better suited for dealing with unobserved heterogeneity in a single-spell hazard setting (than including unit fixed effects)
- These well-known estimators already implemented in Stata
- Using numerous internal instruments renders implementation through existing commands cumbersome
- xtdhazard eases using theses estimators for Stata users
- cfbinout can be used as stand-alone estimator, which complements ivprobit and ivcloglog

Distribution of Hazard

• Comparison of simulations with mean $\overline{\lambda} = 0.25$ and $\overline{\lambda} = 0.05$

Simulation Results: Logit, $\overline{\lambda} = 0.25$

Table: Average Partial Effects (logit, $\overline{\lambda} = 0.25$)

Av. partial		Scenarios: rhs vars. inclusion					
effect of	Estimator	x _{con}	X _{con} , X _{tiv}	x _{con} , x _{bin}	$X_{\rm con}, X_{\rm bin}, X_{\rm tiv}$		
	Naive logit	0.035	0.055	0.044	0.058		
	CF logit	0.102	0.101	0.099	0.097		
Xcon	2SLS	0.102	0.101	0.099	0.097		
	True value	0.103	0.102	0.101	0.098		
	Naive logit			0.079	0.083		
	CF logit			0.102	0.100		
x _{bin}	2SLS			0.102	0.100		
	True value			0.102	0.100		

Note: The table presents simulation results comparing estimated and true mean-marginal effects in a discrete time hazard framework. The estimations were based on 2000 simulation runs. "True value" refers to the actual mean-marginal effects used in the simulation. The constants chosen for different scenarios were selected to achieve a mean probability of 0.25.

Simulation Results: Cloglog, $\lambda = 0.25$

Table: Average Partial Effects (cloglog, $\overline{\lambda} = 0.25$)

Av. partial		clusion			
effect of	Estimator	x _{con}	$x_{\rm con}, x_{\rm tiv}$	x _{con} , x _{bin}	$x_{\rm con}, x_{\rm bin}, x_{\rm tiv}$
X _{con}	Naive cloglog CF cloglog 2SLS True value	0.057 0.166 0.166 0.167	0.088 0.161 0.161 0.163	0.070 0.156 0.156 0.160	0.088 0.148 0.148 0.150
x _{bin}	Naive cloglog CF cloglog 2SLS True value			0.125 0.162 0.162 0.162	0.127 0.153 0.153 0.153

Note: The table presents simulation results comparing estimated and true mean-marginal effects in a discrete time hazard framework. The estimations were based on 2000 simulation runs. "True value" refers to the actual mean-marginal effects used in the simulation. The constants chosen for different scenarios were selected to achieve a mean probability of 0.25.

Simulation Results: Probit, $\overline{\lambda} = 0.05$

Table: Average Partial Effects (probit, $\overline{\lambda} = 0.05$)

Av. partial		Scenarios: rhs vars. inclusion					
effect of	Estimator	x _{con}	$x_{\rm con}, x_{\rm tiv}$	X _{con} , X _{bin}	$x_{\rm con}, x_{\rm bin}, x_{\rm tiv}$		
x _{con}	Naive probit CF probit 2SLS True value	0.035 0.102 0.101 0.104	0.052 0.095 0.094 0.096	0.039 0.087 0.086 0.089	0.050 0.083 0.083 0.084		
x _{bin}	Naive probit CF probit 2SLS True value			0.060 0.080 0.080 0.080	0.057 0.069 0.069 0.069		

Note: The table presents simulation results comparing estimated and true mean-marginal effects in a discrete time hazard framework. The estimations were based on 2000 simulation runs. "True value" refers to the actual mean-marginal effects used in the simulation. The constants chosen for different scenarios were selected to achieve a mean probability of 0.05.

References

- Cantoni, D. (2012). Adopting a New Religion: The Case of Protestantism in 16th Century Germany, *The Economic Journal* **122**(560): 502–531.
- Farbmacher, H. and Tauchmann, H. (2023). Linear fixed-effects estimation with nonrepeated outcomes, *Econometric Reviews* **42**(8): 635–654.
- Jenkins, S. P. (1995). Easy Estimation Methods for Discrete-Time Duration Models, *Oxford Bulletin of Economics and Statistics* **57**(1): 129–136.
- Terza, J. (2017). Two-stage residual inclusion estimation: A practitioners guide to Stata implementation, *Stata Journal* **17**(4): 916–938.
- Tutz, G. and Schmid, M. (2016). *Modeling Discrete Time-to-Event Data*, Springer Series in Statistics, Springer International Publishing, Cham.
- Wooldridge, J. M. (2015). Control Function Methods in Applied Econometrics, *The Journal of Human Resources* **50**(2): 420–445.